An indecomposable and unconditionally saturated Banach space
نویسندگان
چکیده
منابع مشابه
On Unconditionally Saturated Banach Spaces
We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set A, in the Effros-Borel space of subspaces of C[0, 1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y , with a Schauder basis, that contains isomorphic copies of every space X in the c...
متن کاملA Hereditarily Indecomposable Asymptotic `2 Banach Space
A famous open problem in functional analysis is whether there exists a Banach space X such that every (bounded linear) operator on X has the form λ+K where λ is a scalar and K denotes a compact operator. This problem is usually called the “scalar-plus-compact” problem [14]. One of the reasons this problem has become so attractive is that by a result of N. Aronszajn and K.T. Smith [7], if a Bana...
متن کاملInterpolating Hereditarily Indecomposable Banach Spaces
A Banach space X is said to be Hereditarily Indecomposable (H.I.) if for any pair of closed subspaces Y , Z of X with Y ∩ Z = {0}, Y + Z is not a closed subspace. (Throughout this section by the term “subspace” we mean a closed infinite-dimensional subspace of X .) The H.I. spaces form a new and, as we believe, fundamental class of Banach spaces. The celebrated example of a Banach space with no...
متن کاملUnconditionally converging polynomials on Banach spaces
We prove that weakly unconditionally Cauchy (w.u.C.) series and unconditionally converging (u.c.) series are preserved under the action of polynomials or holomorphic functions on Banach spaces, with natural restrictions in the latter case. Thus it is natural to introduce the unconditionally converging polynomials, defined as polynomials taking w.u.C. series into u.c. series, and analogously, th...
متن کاملOn c0-saturated Banach spaces
A Banach space E is c0-saturated if every closed infinite dimensional subspace of E contains an isomorph of c0. A c0-saturated Banach space with an unconditional basis which has a quotient space isomorphic to l2 is constructed. A Banach space E is c0-saturated if every closed infinite dimensional subspace of E contains an isomorph of c0. In [2] and [3], it was asked whether all quotient spaces ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2003
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm159-1-1